

Springbrook 2D Watershed Model

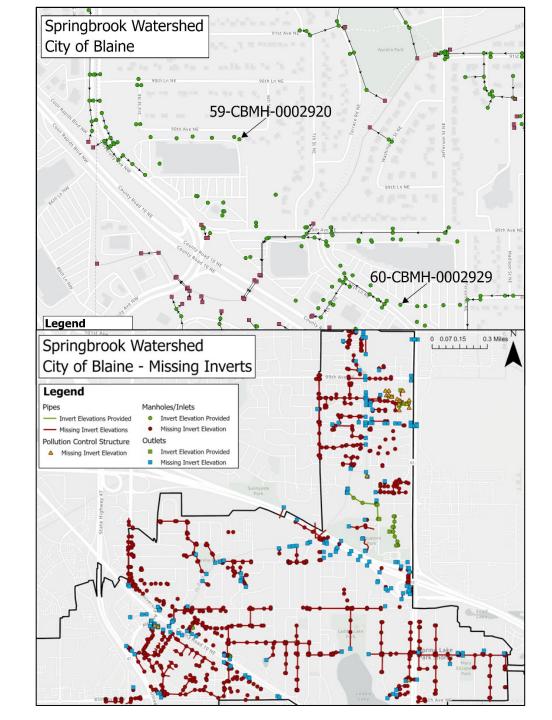
Agenda

- Project Overview
- Model Setup
- Review Results
- Determine Priority Areas
- Compile Potential Projects

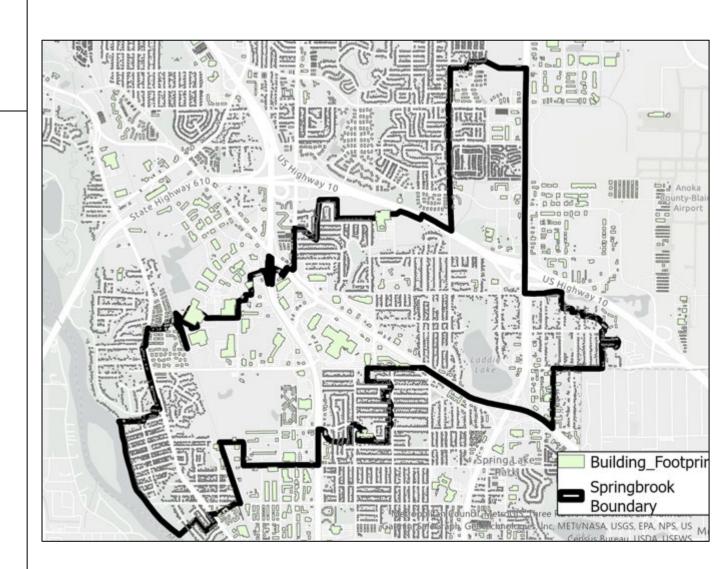
Meeting Goal: Provide update on existing conditions model results and obtain input to determine priority flooding areas and compile potential project list to evaluate in next phase.

Project Overview

- 2D pilot model to understand benefits for planning purposes only, model not used for regulatory requirements
- Utilized existing data sources to develop the model:
 - GIS data from urban areas
 - LiDAR datasets
 - Survey information
 - XPSWMM modeling software
- The ICM model consists of two components:
 - A 1D subsurface (and creek) drainage network
 - A 2D surface model
- Existing conditions model is complete to finalize existing SOW
- Determine priority areas and potential projects for creating proposed model (FOCUS FOR TODAY)


Modeling Approach

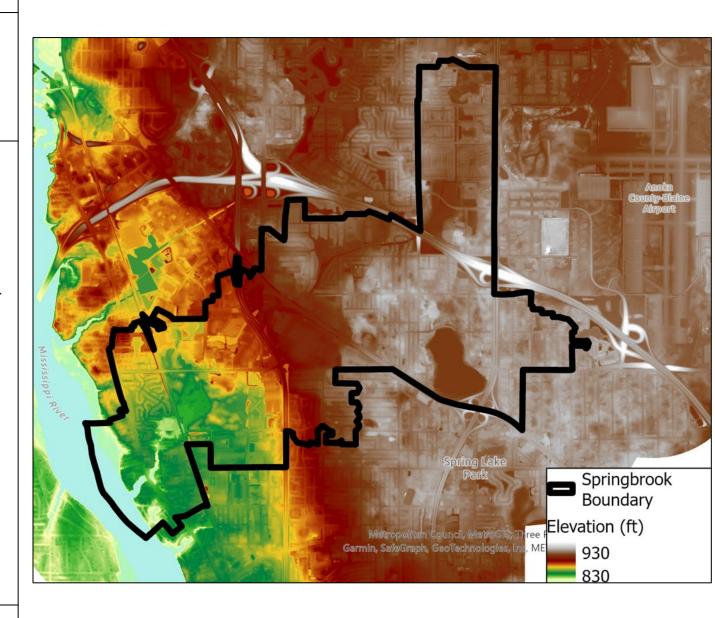
- 1D/2D integrated stormwater model in ICM applying rain-on-mesh methodology
- The subsurface stormwater network was built by combining data from the existing XPSWMM model and available GIS information
- The surface was modeled using a mesh built from a digital elevation model (DEM) covering the region with Horton Infiltration applied
- Major surface conveyance components and permanent water features (rivers, lakes) were modeled with a 1D representation where appropriate


GIS Data Review – Subsurface Network

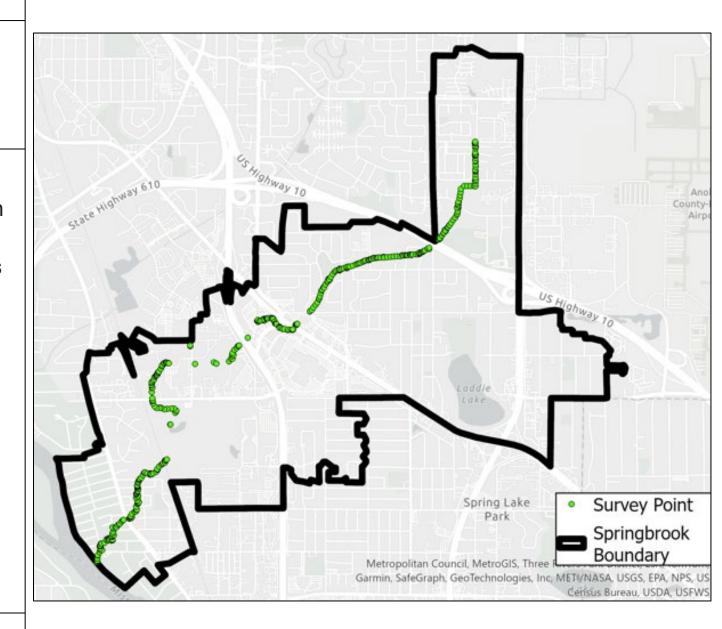
- Majority of subsurface drainage is missing from the XPSWMM model
- City GIS data used where available:
 - Pipe Sizes
 - Invert Elevations
 - Pipes
- Assumptions were used to fill in data gaps and flagged in the model if data becomes available in future

GIS Data Review – Buildings

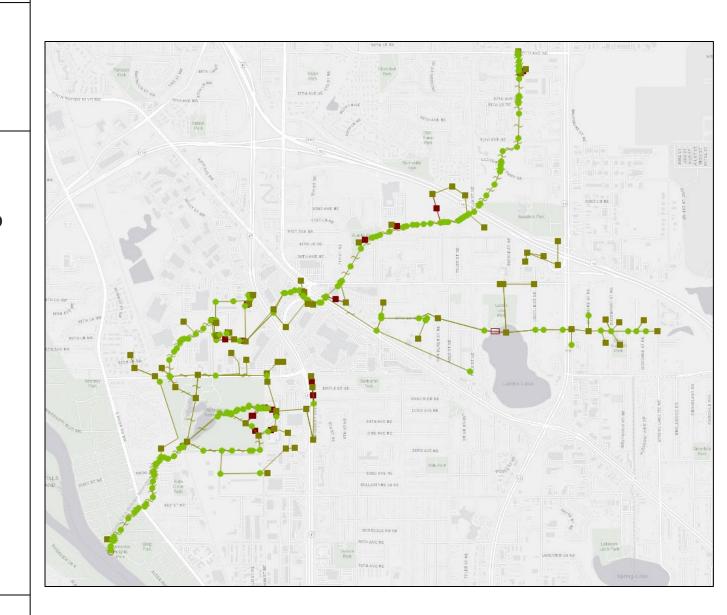
 Building footprints for the Coon Creek area were pulled from Anoka County website


GIS Data Review – Impervious Coverage

- Impervious surface layer provided by CCWD
- Covers most impervious surfaces within the Springbrook watershed

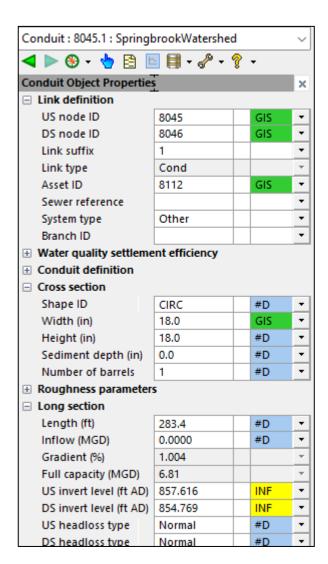

LiDAR Data

- Stantec previously converted 2022 LiDAR data to a useable DEM
- The DEM covers the entire Springbrook watershed and will be used for the 2D model ground surface (outside of permanent water features)
- DEM resolution is 1ft x 1ft


Survey Data

- 2021 ditch centerline survey elevation data used to represent Springbrook stream reach
- Limited survey data covering an entire cross section
- Cross sections for the model will be built by combining DEM and survey data

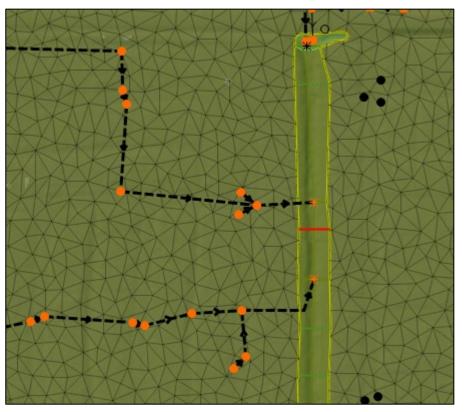
XPSWMM Model


- Only contains major conveyance network
- Some stream reaches are simplified and do not follow the stream centerlines
- Primary source for structure information (culverts, etc.) along major conveyance pathways

Model Assumptions – Flagging in ICM

- Every field in ICM is accompanied by a data flag
- This allows us to identify the data source used to populate the information within the model by creating user defined flags
- Assumptions used to fill in data gaps were flagged in the model for easier updating if data becomes available

AS	¥	Assumed Value
DEM	₩	From DEM
GIS	*	From GIS Dataset
INF	▼	Inferred Value
XP	-	From XPSWMM Model


Model Assumptions – GIS Data Gaps

- Missing ground surface information
 - Sampled from DEM
- Missing invert information
 - Interpolated from US/DS known inverts where possible
 - If US inverts are not known assume 3 feet of cover
 - For long sections of unknown pipe inverts generally follow ground surface
- Missing pipe size
 - Use downstream or upstream pipe size if known
 - Assume 18-inch size on any unknown pipe segments
- Missing pipe
 - Use best judgement following ground surface to connect manholes/inlets to nearby ditch

Model Assumptions – River Reaches

- Major overland conveyance routes modeled as 1D river reaches with bank lines that are connected to the 2D mesh
- Cross sections for the 1D river reaches are built by using the DEM data combined with the ditch centerline data for the stream bottom

1 2 3 4	0.000		Survey ft)	Bed level (ft AD)	Manning's n	New panel	
3		506753.256	140055.335	903.863	0.0270		
	3.000	506750.257	140055.394	903.310	0.0270		
4	6.000	506747.257	140055.452	902.902	0.0270		
	9.000	506744.258	140055.510	902.902	0.0270		
5	12.000	506741.258	140055.569	902.476	0.0270		
6	15.000	506738.259	140055.627	902.097	0.0270		
7	18.000	506735.260	140055.686	901.733	0.0270		
8	21.000	506732.260	140055.744	900.474	0.0270		
9	33.000	506720.262	140055.978	896.768	0.0270		
10	45.000	506708.265	140056.212	899.877	0.0270		
11	48.000	506705.265	140056.270	901.569	0.0270		
12	48.526	506704.739	140056.280	902.568	0.0270		
13	51.526	506701.740	140056.338	902.570	0.0270		
14	54.526	506698.741	140056.396	903.218	0.0270		
905.0 -							

Model Assumptions – Other inputs

• Standard Horton Infiltration Values for the region used as a starting point, modifications were made after comparing model results to historic event data

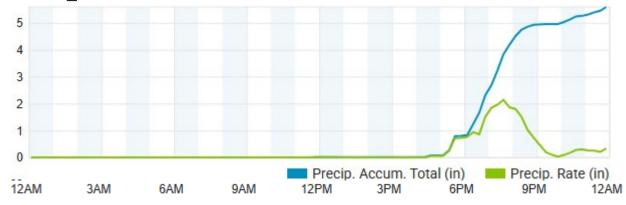
Hydrologic Soil Group	Max. Infiltration Rate (in/hr)	Min. Infiltration Rate (in/hr)	Decay Coefficient (1/s)
Α	5	0.5	0.00115
В	3	0.3	0.00115
С	2	0.1	0.00115
D	1	0.03	0.00115

• Standard manning's n roughness values will be applied to the model (XPSWMM values):

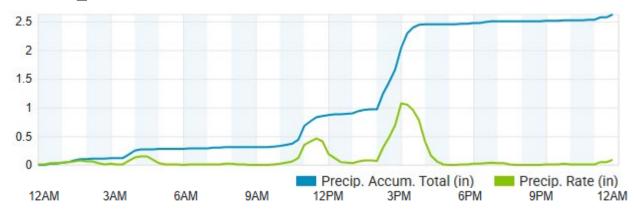
■ Pipes: 0.013

Stream Channel: 0.027

Channel Banks: 0.045


Impervious Surfaces: 0.018

Pervious Surfaces: 0.06


Historic Storms

- Two historic storms used to validate model results
- These events are:
 - 1. September 21-22, 2016
 - 2. September 25, 2023
- Precipitation data for these events were sourced from nearby weatherunderground Personal Weather Stations
- ICM can apply multiple raingauges, mesh elements were assigned rainfall from closest raingauge

September 21, 2016

September 25, 2023

Internal Model Review

- Add buffer to existing subwatershed boundary to ensure runoff that might be flowing into or out of Springbrook during larger storm events was captured
- Reviewed Mississippi River elevations for sensitivity of the model and set it at NWL based on aerial images and local gauges
- Broke up roof drainage for buildings greater than 2 acres

Model Results

- Results for 10- and 100-Yr storm designs
 - Overall water surface extent
 - Structural flooding
 - Road overtopping

Springbrook Creek 10/100 Year Flooding Impact

Priority Areas and Potential Projects

Springbrook Creek 10/100 Year Flooding Impact

Next Steps

Questions

Thank you

